

DATA STRUCTURES

Introduction:
Basic Concepts and Notations
Complexity analysis: time space tradeoff
Algorithmic notations, Big O notation
Introduction to omega, theta and little o notation

Basic Concepts and Notations

⚫ Algorithm: Outline, the essence of a computational
procedure, step-by-step instructions

⚫ Program: an implementation of an algorithm in some
programming language

⚫ Data Structure: Organization of data needed to solve
the problem

Algorithmic Problem

⚫ Infinite number of input instances satisfying the
specification. For example: A sorted, non-decreasing
sequence of natural numbers of non-zero, finite
length:
⚫ 1, 20, 908, 909, 100000, 1000000000.
⚫ 3.

Specification
of input ?

Specification
of output as a

function of
input

Algorithmic Solution

⚫ Algorithm describes actions on the input instance
⚫ Infinitely many correct algorithms for the same

algorithmic problem

Specification
of input Algorithm

Specification
of output as a

function of
input

What is a Good Algorithm?

⚫ Efficient:
⚫ Running time
⚫ Space used

⚫ Efficiency as a function of input size:
⚫ The number of bits in an input number
⚫ Number of data elements(numbers, points)

Complexity Analysis
and

Time Space Trade-off

Complexity
⚫ A measure of the performance of an algorithm

⚫ An algorithm’s performance depends on

⚫ internal factors

⚫ external factors

 External Factors
⚫ Speed of the computer on which it is run

⚫ Quality of the compiler

⚫ Size of the input to the algorithm

Internal Factor

●9

●The algorithm’s efficiency, in terms of:

● Time required to run

● Space (memory storage)required to run

●Note:
●Complexity measures the internal factors (usually more interested
in time than space)

Two ways of finding complexity

⚫Experimental study
⚫Theoretical Analysis

Experimental study

⚫ Write a program implementing the algorithm
⚫ Run the program with inputs of varying size and

composition
⚫ Get an accurate measure of the actual running time
 Use a method like System.currentTimeMillis()
⚫ Plot the results

Example

⚫ a. Sum=0;
 for(i=0;i<N;i++)
 for(j=0;j<i;j++)
 Sum++;

Example graph

●Time in millisec

●Size of n

Limitations of Experiments

⚫ It is necessary to implement the algorithm, which may be

difficult

⚫ Results may not be indicative of the running time on other

inputs not included in the experiment.

⚫ In order to compare two algorithms, the same hardware and

software environments must be used

⚫ Experimental data though important is not sufficient

Theoretical Analysis

⚫ Uses a high-level description of the algorithm instead of an

implementation

⚫ Characterizes running time as a function of the input size, n.

⚫ Takes into account all possible inputs

⚫ Allows us to evaluate the speed of an algorithm independent of

the hardware/software environment

Complexity analysis
⚫ Why we should analyze algorithms?
⚫ Predict the resources that the algorithm requires
⚫ Computational time (CPU consumption)
⚫ Memory space (RAM consumption)
⚫ Communication bandwidth consumption

⚫ The running time of an algorithm is:
⚫ The total number of primitive operations executed (machine

independent steps)
⚫ Also known as algorithm complexity

Need for analysis : Internal
Factors
⚫ To determine resource consumption

⚫ CPU time

⚫ Memory space

⚫ Compare different methods for solving the same

problem before actually implementing them and

running the programs.

⚫ To find an efficient algorithm

Space Complexity
⚫ The space needed by an algorithm is the sum of a fixed part

and a variable part

⚫ The fixed part includes space for

⚫ Instructions

⚫ Simple variables

⚫ Fixed size component variables

⚫ Space for constants

⚫ Etc..

Cont…
⚫ The variable part includes space for

⚫ Component variables whose size is dependant on the

particular problem instance being solved

⚫ Recursion stack space

⚫ Etc..

Time Complexity
⚫ The time complexity of a problem is

⚫ the number of steps that it takes to solve an instance of the problem as a

function of the size of the input (usually measured in bits), using the

most efficient algorithm.

⚫ The exact number of steps will depend on exactly what machine or language

is being used.

⚫ To avoid that problem, the Asymptotic notation is generally used.

Time Complexity
⚫ Worst-case
⚫ An upper bound on the running time for any input of

given size
⚫ Average-case
⚫ Assume all inputs of a given size are equally likely

⚫ Best-case
⚫ The lower bound on the running time

Time Complexity – Example
⚫ Sequential search in a list of size n
⚫ Worst-case:
⚫ n comparisons

⚫ Best-case:
⚫ 1 comparison

⚫ Average-case:
⚫ n/2 comparisons

Asymptotic notations
⚫ Algorithm complexity is rough estimation of

the number of steps performed by given
computation depending on the size of the
input data
⚫ Measured through asymptotic notation
⚫ O(g) where g is a function of the input data size

⚫ Examples:
⚫ Linear complexity O(n) – all elements are processed once (or

constant number of times)
⚫ Quadratic complexity O(n2) – each of the elements is

processed n times

O-notation
Asymptotic upper bound

Example
⚫ The running time is O(n2) means there is a function

f(n) that is O(n2) such that for any value of n, no
matter what particular input of size n is chosen, the
running time of that input is bounded from above by
the value f(n).
⚫ 3 * n2 + n/2 + 12 ∈ O(n2)

⚫ 4*n*log
2
(3*n+1) + 2*n-1 ∈ O(n * log n)

 Ω notation
Asymptotic lower bound

Example
⚫ When we say that the running time (no modifier) of an

algorithm is Ω (g(n)).
⚫ we mean that no matter what particular input of size

n is chosen for each value of n, the running time on
that input is at least a constant times g(n), for
sufficiently large n.

⚫ n3 + 20n ∈ Ω(n2)

Θ notation
g(n) is an asymptotically tight bound of f(n)

Example

Big O notation
⚫ f(n)=O(g(n)) iff there exist a positive constant c and

non-negative integer n0 such that
f(n) ≤ cg(n) for all n≥n0.

⚫ g(n) is said to be an upper bound of f(n).

Basic rules
1. Nested loops are multiplied together.

2. Sequential loops are added.
3. Only the largest term is kept, all others are dropped.
4. Constants are dropped.
5. Conditional checks are constant (i.e. 1).

Example of
complexity

Linear loop

1)
for(int i = 0; i < 10; i++)

 {
cout << i << endl;

}
//time taken = ?

2)
 for(int i = 0; i < n; i++)
 {

cout << i << endl;
}

//time taken = ?

⚫ Ans: O(n)

Quadratic Loops

1) for(int i = 0; i < 100; i++)
{

for(int j = 0; j < 100; j++)
 {

//do swap stuff, constant time
}

} //Time Taken =?

2) for(int i = 0; i < n; i++)
{

for(int j = 0; j < n; j++)
 {

//do swap stuff, constant time
}

} //Time Taken =?

⚫ Ans O(n^2)

Complex condition

1) for(int i = 0; i < 2*100; i++)
 {
cout << i << endl;
}

//Time Taken =?

2) for(int i = 0; i < 2*n; i++)
 {
cout << i << endl;
}

//Time Taken =?

⚫ At first you might say that the upper bound is O(2n);
however, we drop constants so it becomes O(n)

More loops in one program
1) for(int i = 0; i <10 ; i++)

 {
cout << i << endl;

 }

for(int i = 0; i < 100; i++)
{
for(int j = 0; j < 100; j++)

{
//do constant time stuff
}

} //Time Taken =?

2)

for(int i = 0; i < n; i++)
 {

cout << i << endl;
 }

for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)

{
//do constant time stuff
}

} //Time Taken =?

⚫ Ans : In this case we add each loop's Big O, in this case
n+n^2. O(n^2+n) is not an acceptable answer since we
must drop the lowest term. The upper bound is
O(n^2). Why? Because it has the largest growth rate

Quadratic loop

1) for(int i = 0; i < 100; i++)
 {

for(int j = 0; j < 2; j++)
{
//do stuff
}

 } //Time Taken =?

2) for(int i = 0; i < n; i++)
{

for(int j = 0; j < 2; j++)
{
//do stuff
}

}
 //Time Taken =?

⚫ Ans: Outer loop is 'n', inner loop is 2, this we have 2n,
dropped constant gives up O(n)

Complex iteration

1) for(int i = 1; i < n; i =i* 2)
 {

cout << i << endl;
}

//Time Taken =?

2) for(int i = 1; i < 100; i =i* 2)
 {

cout << i << endl;
}

//Time Taken =?

⚫ There are n iterations, however, instead of simply
incrementing, 'i' is increased by 2*itself each run. Thus
the loop is log(n).

Quadratic loop

1) for(int i = 0; i < n; i++)
{

for(int j = 1; j < n; j *= 2)
{
//do constant time stuff
}

}
//Time Taken =?

⚫ Ans: n*log(n)

While (n>=1)
{

n=n/2;
}

2) While (n>=1)
{

n=n/2;
}

●Comp 122

Relations Between Θ, O, Ω

time space tradeoff
⚫ A time space tradeoff is a situation where the memory use

can be reduced at the cost of slower program execution
(and, conversely, the computation time can be reduced at
the cost of increased memory use).

⚫ As the relative costs of CPU cycles, RAM space, and hard
drive space change—hard drive space has for some time
been getting cheaper at a much faster rate than other
components of computers[citation needed]—the
appropriate choices for time space tradeoff have changed
radically.

⚫ Often, by exploiting a time space tradeoff, a program can be
made to run much faster.

Time Space Trade-off
⚫ In computer science, a space-time or time-memory trade off is a situation

where the memory use can be reduced at the cost of slower program

execution (or, vice versa, the computation time can be reduced at the cost of

increased memory use). As the relative costs of CPU cycles, RAM space,

and hard drive space change — hard drive space has for some time been

getting cheaper at a much faster rate than other components of

computers-the appropriate choices for space-time tradeoffs have

changed radically. Often, by exploiting a space-time tradeoff, a

program can be made to run much faster.

Types of Time Space Trade-off
⚫ Lookup tables v. recalculation

 The most common situation is an algorithm involving a lookup table: an

implementation can include the entire table, which reduces computing time,

but increases the amount of memory needed, or it can compute table entries

as needed, increasing computing time, but reducing memory requirements.

⚫ Compressed v. uncompressed data

 A space-time trade off can be applied to the problem of data storage. If data

is stored uncompressed, it takes more space but less time than if the data

were stored compressed (since compressing the data reduces the amount of

space it takes, but it takes time to run the decompression algorithm).

Depending on the particular instance of the problem, either way is practical.

Thank You

Searching & Sorting

Linear Search

Linear Search

• Linear search is a very simple search
algorithm.

• In this type of search, a sequential search is
made over all items one by one.

• Every items is checked and if a match founds
then that particular item is returned otherwise
search continues till the end of the data
collection.

Linear Search

• The sequential search (also called the linear search) is the
simplest search algorithm.

• It is also the least efficient.

• It simply examines each element sequentially, starting with
the first element, until it finds the key element or it reaches
the end of the array.

Example: If you were looking for someone on a moving
passenger train, you would use a sequential search.

Algorithm
A linear array DATA with N elements and a specific ITEM of information

are given. This algorithm finds the location LOC of ITEM in the array DATA
or sets LOC = 0.

1. [Initialize] Set K := 1 and LOC := 0.
2. Repeat Steps 3 and 4 while LOC = 0 and K <= N.
3. If ITEM = DATA[K], then: Set LOC := K.
4. Set K := K + 1. [Increments counter.]
 [End of Step 2 loop.]
5. [Successful?]

If Loc = 0, then:
Write: ITEM is not in the array DATA.

Else:
Write: LOC is the location of the ITEM.

[End of If structure.]
6. Exit.

Binary search

The Binary Search Algorithm

• The binary search is the standard algorithm for searching
through a sorted sequence.

• It is much more efficient than the sequential search, but it
does require that the elements be in order.

• It repeatedly divides the sequence in two, each time
restricting the search to the half that would contain the
element.

• You might use the binary search to look up a word in a
dictionary.

The Binary Search Algorithm

• This search algorithm works on the principle of divide
and conquer.

• For this algorithm to work properly the data collection
should be in sorted form.

• Binary search search a particular item by comparing
the middle most item of the collection.

• If match occurs then index of item is returned.
• If middle item is greater than item then item is

searched in sub-array to the right of the middle item
other wise item is search in sub-array to the left of the
middle item.

• This process continues on sub-array as well until the
size of subarray reduces to zero.

How binary search works?

• For a binary search to work, it is mandatory for the target array to be
sorted.

• We shall learn the process of binary search with an pictorial example.
• The below given is our sorted array and assume that we need to search

location of value 31 using binary search.

• First, we shall determine the half of the array by using this formula −
mid = low + (high - low) / 2

• Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So 4 is the mid of array.

How binary search works?

• Now we compare the value stored at location 4, with the value being searched i.e.
31.

• We find that value at location 4 is 27, which is not a match. Because value is greater
than 27 and we have a sorted array so we also know that target value must be in
upper portion of the array.

• We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

• Our new mid is 7 now. We compare the value stored at location 7 with our target
value 31.

How binary search works?

• The value stored at location 7 is not a match, rather it is less that what we
are looking for. So the value must be in lower part from this location.

• So we calculate the mid again. This time it is 5.

• We compare the value stored ad location 5 with our target value. We find
that it is a match.

• We conclude that the target value 31 is stored at location 5.

• Binary search halves the searchable items and thus reduces the count of
comparisons to be made to very less numbers.

Algorithm
(Binary search) BINARY(DATA, LB, UB, ITEM, LOC)
Here DATA is a sorted array with lower bound LB and upper bound UB, and ITEM is

a given item of information. The variables BEG, END and MID denote, resp., the
beginning, end, and middle locations of a segment of elements of DATA. The algo
finds the location LOC of ITEM in DATA or sets LOC = NULL.

1. [Initialize segment variables.]
Set BEG := LB, END := UB and MID := Int((BEG + END) / 2).

2. Repeat steps 3 and 4 while BEG <= END and DATA[MID] != ITEM.
3. If ITEM < DATA[MID], then:

Set END := MID – 1.
 Else: Set BEG := MID + 1.

[End of If.]
4. Set MID := INT((BEG + END)/2).
 [End of Step 2 loop.]

5. If DATA[MID] = ITEM, then:
Set LOC := MID.

 Else: Set LOC := NULL.
 [End of If.]
6. Exit.

Data Structures Using C++ 13

Binary Search: Example

Data Structures Using C++ 14

Binary Search

Sorting Techniques

• Sorting refers to arranging data in a particular format. Sorting
algorithm specifies the way to arrange data in a particular order.
Most common orders are numerical or lexicographical order.

• Importance of sorting lies in the fact that data searching can be
optimized to a very high level if data is stored in a sorted manner.
Sorting is also used to represent data in more readable formats.
Some of the examples of sorting in real life scenarios are
following:

Telephone Directory − Telephone directory keeps telephone no.
of people sorted on their names. So that names can be searched.
Dictionary − Dictionary keeps words in alphabetical order so that

searching of any work becomes easy.

Example

• Sorting takes an unordered collection and makes
it an ordered one.

512354277 101

1 2 3 4 5 6

5 12 35 42 77 101

1 2 3 4 5 6

Bubble Sort

Bubble Sort

• Bubble sort is a simple sorting algorithm.
• This sorting algorithm is comparison based

algorithm in which each pair of adjacent
elements is compared and elements are
swapped if they are not in order.

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

512354277 101

1 2 3 4 5 6

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

512354277 101

1 2 3 4 5 6

Swap42 77

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

512357742 101

1 2 3 4 5 6

Swap35 77

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

512773542 101

1 2 3 4 5 6

Swap12 77

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

577123542 101

1 2 3 4 5 6

No need to swap

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

577123542 101

1 2 3 4 5 6

Swap5 101

"Bubbling Up" the Largest Element

• Traverse a collection of elements
– Move from the front to the end

– “Bubble” the largest value to the end using
pair-wise comparisons and swapping

77123542 5

1 2 3 4 5 6

101

Largest value correctly placed

Items of Interest

• Notice that only the largest value is correctly
placed

• All other values are still out of order

• So we need to repeat this process

77123542 5

1 2 3 4 5 6

101

Largest value correctly placed

Repeat “Bubble Up” How Many
Times?

• If we have N elements…

• And if each time we bubble an element, we
place it in its correct location…

• Then we repeat the “bubble up” process N –
1 times.

• This guarantees we’ll correctly
place all N elements.

“Bubbling” All the Elements

77123542 5

1 2 3 4 5 6

 101

 5421235 77

1 2 3 4 5 6

 101

42 5 3512 77

1 2 3 4 5 6

 101

42 35 512 77

1 2 3 4 5 6

 101

42 35 12 5 77

1 2 3 4 5 6

 101

N
 -

 1

Algorithm for sorting an array (Bubble sort)

(Bubble sort) BUBBLE (DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in

DATA.

1. Repeat Steps 2 and 3 for K = 1 to N – 1.
2. Set PTR := 1. [Initialize pass pointer PTR.]
3. Repeat while PTR <= (N – K): [Executes pass.]

(a) If DATA[PTR] > DATA[PTR + 1], then:
Interchange DATA[PTR] and DATA[PTR + 1].

 [End of If structure.]
(b) Set PTR := PTR + 1.

[End of inner loop.]
[End of Step 1 outer loop.]

4. Exit.

Summary
• “Bubble Up” algorithm will move largest value to

its correct location (to the right)

• Repeat “Bubble Up” until all elements are
correctly placed:

– Maximum of N-1 times

– Can finish early if no swapping occurs

• We reduce the number of elements we compare
each time one is correctly placed

Selection Sort

Selection Sort

• Selection sort is a simple sorting algorithm. This
sorting algorithm is a in-place comparison based
algorithm in which the list is divided into two
parts, sorted part at left end and unsorted part at
right end.

• Smallest element is selected from the unsorted
array and swapped with the leftmost element

• This process continues moving unsorted array
boundary by one element to the right.

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

5 1 3 4 6 2

Comparison

Data Movement

Sorted

🡺
Min

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

Selection Sort

1 5 3 4 6 2

Comparison

Data Movement

Sorted

🡺
Min

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

🡺
Min

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

🡺
Min

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 6 5

Comparison

Data Movement

Sorted

🡺
Min

Selection Sort

1 2 3 4 5 6

Comparison

Data Movement

Sorted

Selection Sort

1 2 3 4 5 6

Comparison

Data Movement

Sorted

DONE!

Selection Sort
Selection_Sort (A, n)
1. Repeat for k= 1 to n-1
2. Call Min(A, n, k, loc)
3. Interchange A[k] with A[loc]

a)set temp = A[K]
b)A[k]= A[loc]
c)A[loc]= temp

End of loop
4. Exit

Min(A, n, k, loc)
1. Set min= A[K] & loc= k
2. Repeat for j= k+1, k+2, ……., n

If(min>A[j]) then
Set min=A[j] and loc=j

End of loop
3. Exit

Insertion Sort

Insertion Sort

• This is a in-place comparison based sorting
algorithm. Here, a sub-list is maintained which is
always sorted.

• For example, the lower part of an array is
maintained to be sorted.

• A element which is to be inserted in this sorted
sub-list, has to find its appropriate place and insert
it there. Hence the name insertion sort.

• The array is searched sequentially and unsorted
items are moved and inserted into sorted sub-list
(in the same array).

68

0.5
6

1.1
2

1.1
7

0.3
2

2.7
8

7.4
2

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 0: step 0.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

69

0.5
6

1.1
2

1.1
7

0.3
2

2.7
8

7.4
2

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 1: step 0.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

70

0.5
6

1.1
2

1.1
7

0.3
2

2.7
8

7.4
2

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 2: step 0.

Insertion Sort

0.5
6

7.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

71

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 2: step 1.

Insertion Sort

0.5
6

2.7
8

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

72

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 2: step 2.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

73

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 3: step 0.

Insertion Sort

1.1
2

7.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

74

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 3: step 1.

Insertion Sort

1.1
2

2.7
8

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

75

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 3: step 2.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

76

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 4: step 0.

Insertion Sort

1.1
7

7.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

77

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

2 3 4 50 1 8 9Array index 6 7

Iteration 4: step 1.

Insertion Sort

1.1
7

2.7
8

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

78

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 4: step 2.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

79

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 5: step 0.

Insertion Sort

0.3
2

7.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

80

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 5: step 1.

Insertion Sort

0.3
2

2.7
8

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

81

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 5: step 2.

Insertion Sort

0.3
2

1.1
7

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

82

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 5: step 3.

Insertion Sort

0.3
2

1.1
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

83

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 5: step 4.

Insertion Sort

0.3
2

0.5
6

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

84

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 5: step 5.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

85

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 6: step 0.

6.2
1

7.4
2

2 3 4 50 1 8 9Array index 6 7

Insertion Sort
• Iteration i. Repeatedly swap element i with

the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

86

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 6: step 1.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

87

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 7: step 0.

Insertion Sort

4.4
2

7.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

88

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 7: step 1.

Insertion Sort

4.4
2

6.2
1

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

89

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 7: step 2.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

90

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 8: step 0.

Insertion Sort

3.1
4

7.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

91

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 8: step 1.

Insertion Sort

3.1
4

6.2
1

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

92

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 8: step 2.

Insertion Sort

3.1
4

4.4
2

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

93

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 8: step 3.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

94

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 9: step 0.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

95

7.4
2

1.1
2

1.1
7

0.3
2

2.7
8

0.5
6

3.1
4

7.7
1Value

6.2
1

4.4
2

Iteration 10: DONE.

Insertion Sort

2 3 4 50 1 8 9Array index 6 7

• Iteration i. Repeatedly swap element i with
the one to its left if smaller.

• Property. After ith iteration, a[0] through a[i]
contain first i+1 elements in ascending order.

Algorithm

Insertion_Sort (A, n)

1. Repeat for i = 1 to n:
2. Set j = i
3. Repeat while j >0 and a[j] < a[j-1]:
4. Set temp = a[j]
5. Set a[j] = a[j-1]
6. Set a[j-1] = temp
7. Set j = j-1

 [End of step 3 loop.]
8. [End of step 1 loop.]
9. Return.

Merge Sort

Merge Sort

• Merge sort is a sorting technique based on
divide and conquer technique. With
worst-case time complexity being Ο(n log n), it
is one of the most respected algorithms.

• Merge sort first divides the array into equal
halves and then combines them in a sorted
manner.

An Example: Merge Sort
Sorting Problem: Sort a sequence of n elements into

non-decreasing order.

• Divide: Divide the n-element sequence to be
sorted into two subsequences of n/2 elements
each

• Conquer: Sort the two subsequences recursively
using merge sort.

• Combine: Merge the two sorted subsequences to
produce the sorted answer.

Merge Sort

• To understand merge sort, we take an unsorted array as
depicted below −

• We know that merge sort first divides the whole array
iteratively into equal halves unless the atomic values are
achieved. We see here that an array of 8 items is divided into
two arrays of size 4.

• This does not change the sequence of appearance of items in
the original. Now we divide these two arrays into halves.

Merge Sort

• We further divide these arrays and we achieve atomic value
which can no more be divided.

• Now, we combine them in exactly same manner they were
broken down. Please note the color codes given to these lists.

• We first compare the element for each list and then combine
them into another list in sorted manner. We see that 14 and 33
are in sorted positions. We compare 27 and 10 and in the target
list of 2 values we put 10 first, followed by 27. We change the
order 19 and 35. 42 and 44 are placed sequentially.

Merge Sort

• In next iteration of combining phase, we compare lists of two
data values, and merge them into a list of foud data values
placing all in sorted order.

• After final merging, the list should look like this −

Merge Sort – Example

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

2618 6 32 1543 1 9

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 15 43 1 9

 6 18 26 32 1 9 15 43

 1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

 6

 6

32 6

18 26 32 6

43

43

15

15

43 15

 9

 9

 1

 1

 9 1

43 15 9 1

18 26 32 6 43 15 9 1

18 26 6 32

 6 26 3218

1543 1 9

 1 9 15 43

 1 6 9 1518 26 32 43

Original Sequence Sorted
Sequence

Divide

Divide Divide

Conquer/Merge

Merge-Sort (A, fst, lst)
INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSort (A, fst, lst) // sort A[fst...lst] by divide & conquer
1 if fst< lst
2 then mid ← ⎣(fst+lst)/2⎦
3 MergeSort (A, fst, mid)
4 MergeSort (A, mid+1, lst)
5 Merge (A, fst, mid, lst) // merges A[fst..mid] with A[mid+1..lst]

Initial Call: MergeSort(A, 1, n)

Procedure Merge
Merge(A, fst, mid, lst)
1 n1 ← (mid – fst + 1)
2 n2 ← (lst – mid)

3 for i ← 1 to n1
4 do L[i] ← A[fst+ i – 1]
5 for j ← 1 to n2
6 do R[j] ← A[mid + j]

7 L[n1+1] ← ∞
8 R[n2+1] ← ∞
9 i ← 1

10 j ← 1
11 for k ←fst to lst
12 do if L[i] ≤ R[j]
13 then A[k] ← L[i]
14 i ← i + 1
15 else A[k] ← R[j]
16 j ← j + 1

Sentinels, to avoid having to
check if either subarray is
fully copied at each step.

Input: Array containing sorted subarrays
A[fst...mid] and A[mid+1…lst]

Output: Merged sorted subarray in
A[fst...lst].

fst lst

j

i

k

L

R

A

n1

n2

MergeSort (Example) - 1

MergeSort (Example) - 2

MergeSort (Example) - 3

MergeSort (Example) - 4

MergeSort (Example) - 5

MergeSort (Example) - 6

MergeSort (Example) - 7

MergeSort (Example) - 8

MergeSort (Example) - 9

MergeSort (Example) - 10

MergeSort (Example) - 11

MergeSort (Example) - 12

MergeSort (Example) - 13

MergeSort (Example) - 14

MergeSort (Example) - 15

MergeSort (Example) - 16

MergeSort (Example) - 17

MergeSort (Example) - 18

MergeSort (Example) - 19

MergeSort (Example) - 20

MergeSort (Example) - 21

MergeSort (Example) - 22

Shell Sort

Shell Sort -Background

• General Theory:

– Makes use of the intrinsic strengths of Insertion sort.
Insertion sort is fastest when:

• The array is nearly sorted.

• The array contains only a small number of data items.

– Shell sort works well because:

– It always deals with a small number of elements.

– Elements are moved a long way through array with
each swap and this leaves it more nearly sorted.

Shell Sort - example

80 93 60 6812 8542 30 10

Initial Segmenting Gap = 4

10 30 60 6812 8542 93 80

Shell Sort - example (3)

10 12 30 8042 8560 68 93

10 12 42 6830 9360 85 80

Resegmenting Gap = 1

Shellsort Examples
• Sort: 18 32 12 5 38 33 16 2

8 Numbers to be sorted, Shell’s increment will be floor(n/2)

* floor(8/2) 🡺 floor(4) = 4

increment 4:

1 2 3 4

18 32 12 5 38 33 16 2

(visualize underlining)

Step 1) Only look at 18 and 38 and sort in order ;
18 and 38 stays at its current position because they are in order.

Step 2) Only look at 32 and 33 and sort in order ;
32 and 33 stays at its current position because they are in order.

Step 3) Only look at 12 and 16 and sort in order ;
12 and 16 stays at its current position because they are in order.

Step 4) Only look at 5 and 2 and sort in order ;
2 and 5 need to be switched to be in order.

Shellsort Examples (con’t)
• Sort: 18 32 12 5 38 33 16 2

Resulting numbers after increment 4 pass:

1832122 3833165
* floor(4/2) 🡺 floor(2) = 2

increment 2: 1 2

18 32 12 2 38 33 16 5

Step 1) Look at 18, 12, 38, 16 and sort them in their appropriate location:

12 38 16 2 18 33 38 5

Step 2) Look at 32, 2, 33, 5 and sort them in their appropriate location:

12 2 16 5 18 32 38 33

Shellsort Examples (con’t)
• Sort: 18 32 12 5 38 33 16 2

* floor(2/2) 🡺 floor(1) = 1

increment 1: 1

12 2 16 5 18 32 38 33

2 5 12 16 18 32 33 38

The last increment or phase of Shellsort is basically an Insertion
Sort algorithm.

Radix Sort

4.RADIX SORT

• It does not compare the values of the numbers to be
sorted.

• Instead it sort by processing the numbers digit by
digit, starting from the least significant digit followed
by the second least significant digit and so on till the
most significant digit.

• Radix sort sorts a set of integers by making several
passes over the set , one pass per digit.

• So the maximum number of passes will be equal to
the number of passes will be equal to the number of
digits in the largest number among the given set of
numbers.

• It should be remembered that if during a certain
pass,there are several numbers with the same digit
value then they will remain at the same relative
places.

• Also if there is no significant digit in a number to
compare with others then it is assumed to be 0.

Operation of radix sort

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

COMPLEXITY ANALYSIS

SORT WORST CASE AVERAGE CASE BEST CASE

BUBBLE SORT O(n2) O(n2) O(n2)

SELECTION SORT O(n2) O(n2) O(n2)

INSERTION SORT O(n2) O(n2) O(n)

HEAP SORT O(n log n) O(n log n) O(n log n)

MERGE SORT O(n log n) O(n log n) O(n log n)

QUICK SORT O(n2) O(n log n) O(n log n)

RADIX SORT O(n2) O(n2) O(n2)

